v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
12.5 Нерасположенность к рискуВыше нами утверждалось, что функции ожидаемой полезности присущ ряд свойств, очень удобных для анализа выбора в условиях неопределенности. В настоящем параграфе мы приведем конкретный пример, подтверждающий сказанное. Применим анализ с позиций ожидаемой полезности к решению простой задачи выбора. Допустим, что в данный момент у потребителя имеется богатства на 10 долл. и что он размышляет, стоит ли сыграть в игру, которая с вероятностью в 50 процентов принесет ему выигрыш в 5 долл. и с вероятностью в 50 процентов - проигрыш в 5 долл. Богатство его, следовательно, становится случайной величиной: имеется вероятность в 50 процентов, что он останется с 5 долларами, и вероятность в 50 процентов. что у него, в итоге, будет 15 долларов. Ожидаемое значение его богатства равно 10 долл., а ожидаемая полезность есть .
Это изображено на рис.12.2. Ожидаемая полезность богатства есть средняя двух чисел u(15$) и u(5$), обозначенных на графике 0,5u(5) и 0,5u(15). Мы изобразили также полезность ожидаемого значения богатства, которую обозначили u(10$). Обратите внимание на то, что на данном графике ожидаемая полезность богатства меньше полезности ожидаемого значения богатства. То есть,
.
Рис.12.2 Нерасположенность к риску. У потребителя, не любящего риск, полезность ожидаемого значения богатства, u(10), больше ожидаемой полезности богатства, 0,5u(5)+0,5u(15).
В этом случае мы говорим, что потребитель не расположен к риску, поскольку предпочитает иметь ожидаемое значение своего богатства, нежели вступить в игру. Конечно, предпочтения потребителя могли бы оказаться такими, что он предпочел бы случайное распределение богатства его ожидаемому значению, и в таком случае мы говорим. что потребитель расположен к риску. Пример такого рода приведен на рис.12.3. Обратите нимание на различие между рис. 12.2 и 12.3. Потребитель, не расположенный к риску, имеет вогнутую функцию полезности - ее наклон, по мере возрастания богатства, уменьшается. У потребителя, расположенного к риску, функция полезности выпуклая - ее наклон, по мере возрастания богатства, становится больше. Следовательно, кривизна функции полезности измеряет отношение потребителя к риску. Как правило, чем более вогнутой является функция полезности, тем в большей степени потребитель не расположен к риску, а чем более она выпукла, тем в большей степени потребитель расположен к риску. Промежуточным является случай линейной функции полезности. Здесь потребитель нейтрален к риску: ожидаемая полезность богатства есть полезность его ожидаемого значения. В этом случае потребителя совершенно не заботит степень рискованности получения его богатства - его интересует лишь ожидаемое значение последнего.
ПРИМЕР: Спрос на страхование
Применим функцию ожидаемой полезности к спросу на страхование, рассматривавшемуся нами ранее. Вспомним, что в примере, о котором идет речь, индивид имел богатство стоимостью 35 000 долл. и мог понести убытки в размере 10 000 долл. Вероятность убытков составляла 1 процент, и покупка страхового полиса на сумму K долларов обходилась ему в rK долларов. Исследуя эту задачу выбора с помощью кривых безразличия, мы увидели, что оптимальный выбор суммы страхования определяется условием равенства MRS потребления при одном исходе потреблением при другом исходе - в случае убытков или в случае отсутствия убытков - отношению . Обозначим через вероятность того, что убытки будут иметь место, и через () вероятность того, что ее не будет.
Рис.12.3 Потребитель, расположенный к риску. Для потребителя, расположенного к риску, ожидаемая полезность богатства, 0,5u(5)+0,5u(15), больше полезности ожидаемого значения богатства, u(10).
Пусть состояние 1 - это ситуация. в которой убытков нет, так что богатство потребителя в этом состоянии есть , и пусть состояние 2 - это ситуация несения убытков, которой соответствует богатство
.
Тогда оптимальный выбор суммы страхования потребителем определяется условием равенства MRS его потребления при одном исходе потреблением при другом исходе отношению цен: (12.1)
Теперь посмотрим на страховой контракт с точки зрения страховой компании. С вероятностью ей придется выплатить K и с вероятностью - ничего. Независимо от исхода, она получит премию . Тогда ожидаемая прибыль страховой компании, P, есть .
Предположим, что в среднем контракт является для страховой компании безубыточным. Иными словами, она предлагает страхование по "справедливой" ставке страховой премии, где " справедливая" означает то, что ожидаемое значение суммы страхования как раз равно издержкам на него. Тогда мы получаем ,
что подразумевает . Подставив это выражение в уравнение (12.), получаем
.
Взаимно уничтожив , получаем, что оптимальная сумма страховки должна удовлетворять условию
(12.2)
В этом уравнении говорится, что предельная полезность дополнительного доллара дохода в случае потери должна равняться предельной полезности дополнительного доллара дохода в случае отсутствия потери. Предположим, что потребитель не расположен к риску, так что по мере увеличения имеющейся у него суммы денег предельная полезность денег для него снижается. Тогда, если , предельная полезность при будет меньше, чем предельная полезность при , и наоборот. Более того, если предельные полезности дохода при и равны, как в уравнении (12.2), то должно соблюдаться . Применив формулы для и , мы находим
,
что подразумевает K=10 000$. Это означает, что, имея шанс заплатить за страховой полис "справедливую" премию, потребитель, не расположенный к риску, всегда предпочтет застраховаться полностью. Это происходит потому, что полезность богатства в каждом состоянии зависит только от общей величины богатства, имеющейся у потребителя в этом состоянии, - а не от того, что он мог бы иметь в каком-то другом состоянии - так что, если общие величины богатства, имеющиеся у потребителя в каждом состоянии, равны, то предельные полезности богатства также должны быть равны. Подытожим сказанное: если потребителю, который не расположен к риску и максимизирует ожидаемую полезность, предлагается сделка справедливого страхования от убытков, он предпочтет в оптимуме застраховаться полностью. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |