v2
Книги, главы из книг для написания диплома, курсовой работы, реферата по предмету Экономика: Микроэкономика. Промежуточный уровень: Учебник. Хэл Р. Вэриан - ПРИЛОЖЕНИЕ -"Электив"

Книги, главы из книг

Экономика

Микроэкономика. Промежуточный уровень: Учебник. Хэл Р. Вэриан

В данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники.

Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ .

Также бесплатно вы можете подобрать литературу по данному предмету.

Списки литературы

Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.

 

Rambler's Top100
 
   
   
   
   
   
   
   
   
   

ПРИЛОЖЕНИЕ

Если выразить ценовую эластичность спроса через производные, то она определяется формулой:

.

В тексте утверждалось, что формула для кривой спроса с постоянной эластичностью имеет вид q = Ape. Чтобы проверить правильность этого утверждения, можно просто взять производную этого выражения по цене:

= eApe-1

и умножить ее на отношение цены к количеству:

=(Ар(-1 = (.

Все удобным образом сокращается, и остается только , что и требовалось доказать.

Линейная кривая спроса описывается формулой q(p) = a — bp. Коэффициент эластичности спроса в точке p задан формулой

( =  = .

При p = 0 эластичность равна нулю. При q = 0 эластичность равна бесконечности.

Общий доход задается формулой R(p) = pq(p). Чтобы увидеть, как изменяется общий доход по мере изменения p, мы берем производную общего дохода по p и получаем

R((p) = pq((p) + q(p).

Предположим, что с ростом p общий доход растет. Тогда

R((p) = p+ q(p) > 0.

Преобразовав это неравенство, мы получаем

( =  > —1.

Вспомнив, что dq/dp отрицательна, и умножив ее на —1, мы находим

(((< 1.

Следовательно, если при повышении цены общий доход возрастает, мы должны находиться в неэластичной части кривой спроса.



Рис.

15.8

Кривая Лаффера. Возможная форма кривой Лаффера, устанавливающей связь между налоговыми ставками и налоговыми поступлениями.

ПРИМЕР: Кривая Лаффера

В этом параграфе мы рассмотрим некоторые простые расчеты коэффициентов эластичности, которые могут быть использованы для исследования одного вопроса, представляющего значительный интерес для экономической политики, а именно: вопроса о том, как меняются налоговые поступления при изменении налоговой ставки.

Допустим, мы строим график зависимости налоговых поступлений от ставки налогообложения. Если налоговая ставка равна нулю, налоговые поступления равны нулю; если налоговая ставка равна 1, никто не захочет ни покупать, ни предлагать на рынке этот товар, поэтому налоговые поступления также будут равны нулю. Следовательно, налоговые поступления как функция налоговой ставки должны сначала возрасти, а потом со временем уменьшиться. (Разумеется, они могут несколько раз возрастать и снижаться при изменении ставки от нуля до 1, но для простоты анализа мы не будем учитывать эту возможность.) Кривая, устанавливающая связь между налоговыми ставками и налоговыми поступлениями, известна как кривая Лаффера, представленная на рис.15.8. Кривая Лаффера обладает интересным свойством — она предполагает, что по достижении достаточно высокого уровня налогообложения дальнейший рост налоговой ставки, в конечном счете, приведет к сокращению налоговых поступлений. Этот эффект назван эффектом Лаффера, в честь экономиста, который в начале 80-х гг. сделал данный график популярным. Как говорили в то время, достоинство кривой Лаффера в том, что вы можете объяснить ее конгрессмену за полчаса, а он сможет рассуждать о ней в течение шести месяцев. И в самом деле, кривая Лаффера часто упоминалась в дебатах по вопросу о последствиях снижения налоговых ставок в 1980 г. Ловушкой в вышеприведенных рассуждениях являются слова "достаточно высокого". Какого именно уровня должна достичь ставка налогообложения, чтобы эффект Лаффера сработал?

Чтобы ответить на этот вопрос, рассмотрим следующую простую модель рынка труда. Предположим, что фирмы предъявляют нулевой спрос на труд, если заработная плата выше , и произвольно высокий спрос на труд, если заработная плата в точности равна . Это означает, что при какой-то зарплате  кривая спроса на труд горизонтальна. Допустим, что кривая предложения труда S(p) имеет традиционный для нее положительный наклон. Равновесие на рынке труда изображено на рис.15.9.



Рынок труда. Равновесие на рынке труда при горизонтальной кривой спроса на труд. В случае налогообложения трудового дохода при каждой ставке заработной платы будет предлагаться меньше труда.

Рис.

15.9

Если мы вводим налог на труд по ставке t, то в случае выплаты фирмой зарплаты  рабочий получает только w = (1 — t). Поэтому, как показано на рис.15.9, кривая предложения труда занимает более крутое положение левее исходной, и количество продаваемого труда падает. После введения налогообложения зарплата снизилась, и это привело к уменьшению продаж труда. Пока все понятно.

Поэтому величина налоговых поступлений T задается формулой

T = tS(w),

где w = (1 — t) и S(w) — предложение труда.

Чтобы увидеть, как меняются налоговые поступления при изменении налоговой ставки, возьмем производную этого выражения по t, получив в результате

= . (15.1)

(Обратите внимание на использование цепного правила взятия производной и на тот факт, что dw/dt = —.)

Эффект Лаффера имеет место, когда налоговые поступления с ростом t падают — иными словами, если выражение отрицательно. Но это явно означает, что предложение труда становится весьма эластичным — оно должно очень сильно падать, когда налоги растут. Поэтому попробуем посмотреть, при каких значениях коэффициента эластичности данное выражение становится отрицательным.

Чтобы уравнение (15.1) было отрицательным, должно соблюдаться условие

—t.

Изменение знака неравенства на противоположный дает нам

,

а после деления обеих частей неравенства на tS(w) получаем

.

Умножив обе части на (1 — t) и используя тот факт, что w = (1 — t), получаем

.

Левая часть этого выражения есть эластичность предложения труда. Мы показали, что эффект Лаффера может иметь место только тогда, когда эластичность предложения труда больше (1 — t)/t.

Возьмем крайний случай, предположив, что ставка налогообложения трудового дохода составляет 50%. Тогда эффект Лаффера может иметь место лишь в случае, когда коэффициент эластичности предложения труда больше 1. Это означает, что 1%-ное сокращение зарплаты привело бы к более, чем 1%-ному сокращению предложения труда. Это очень большая величина для данного коэффициента.

Эконометристы неоднократно производили оценки коэффициентов эластичности предложения труда, и самое высокое значение, которое удалось кому-либо обнаружить, составило около 0,2. Поэтому эффект Лаффера представляется весьма маловероятным применительно ко всем видам налоговых ставок, которые имеются в Соединенных Штатах. Однако в других странах, таких, как Швеция, налоговые ставки много выше, и имеются некоторые данные, свидетельствующие о том, что эффект Лаффера мог бы иметь место.

ПРИМЕР: Другое выражение для эластичности

Приведем другое выражение для коэффициента эластичности, которое иногда может быть полезным.

Оказывается, эластичность можно представить как

.

Доказательство этого предполагает повторяющееся применение цепного правила. Начнем с того, что обратим внимание на то, что

. (15.2)

Мы отметим также, что



,

а это подразумевает, что

.

Подставляя это в уравнение (15.2), получаем

,

что и требовалось доказать.

Таким образом, коэффициент эластичности измеряет наклон кривой спроса, построенной на листке бумаги с логарифмическим масштабом, т.е. показывает, как изменяется логарифм количества при изменении логарифма цены.


Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.

Имя
E-mail
Телефон
Город, ВУЗ
Тип работы
Предмет
Тема работы
Объём работы
Сумма, которую Вы готовы заплатить
Максимальный срок выполнения заказа
Особые замечания

 

Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai.

 

  HotLog Rambler's Top100 Рейтинг@Mail.ru      
  Карта раздела тем Ресурсы сети Списки литературы