v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
18.5. Максимизация прибыли в коротком периодеРассмотрим задачу максимизации прибыли в коротком периоде, когда фактор 2 фиксирован на некотором уровне . Пусть f(x1, x2) — производственная функция фирмы, p — цена выпуска, а w1 и w2 — цены двух факторов производства. Тогда задача нахождения максимума прибыли, стоящая перед фирмой, может быть записана в виде
max pf(x1, ) — w1x1 — w2. x1
Условие оптимального выбора фактора 1 определить нетрудно. Если — выбор фактора 1, максимизирующий прибыль, то произведение цены выпуска на предельный продукт фактора 1 должно равняться цене фактора 1. В условных обозначениях
pMP1(,) = w1.
Другими словами, стоимость предельного продукта фактора должна равняться цене фактора. Чтобы понять суть этого правила, представьте, что будет, если фирма примет решение об использовании чуть большего количества фактора 1. Если добавить чуть-чуть этого фактора, x1, то вы будете производить больше на y = MP1x1, и этот прирост выпуска будет стоить pMP1x1. Но производство этого предельного выпуска обойдется в w1x1. Если стоимость предельного продукта превышает издержки на него, можно увеличить прибыль путем увеличения количества фактора 1. Если стоимость предельного продукта ниже издержек на него, прибыль можно увеличить путем уменьшения объема использования фактора 1. Если прибыль фирмы максимальна, она не должна возрастать при увеличении или уменьшении количества фактора 1. Это означает, что при максимизирующем прибыль выборе факторов и объемов выпуска стоимость предельного продукта pMP1(,) должна равняться цене фактора w1. Это условие можно вывести и графически. Взгляните на рис.18.1. Изображенная на нем кривая представляет производственную функцию при условии сохранения фактора 2 неизменным на уровне . Используя y для обозначения выпуска фирмы, получаем, что прибыль задается выражением
( = py — w1x1 — w2.
Из этого выражения можно получить y, выразив тем самым выпуск как функцию x1:
+x1. (18.1)
Это уравнение описывает изопрофитные линии — все комбинации применяемых факторов производства и выпуска, дающие постоянный уровень прибыли (. По мере изменения ( мы получаем семейство параллельных прямых линий, наклон каждой из которых равен w1/p, а точка пересечения с вертикальной осью задана выражением ((/p) + (w2/p), измеряющим сумму прибыли и постоянных издержек фирмы. Постоянные издержки постоянны, так что единственная величина, которая действительно изменяется при перемещении с одной изопрофитной линии на другую, есть уровень прибыли. Поэтому более высокие уровни прибыли связываются с теми изопрофитными линиями, точки пересечения которых с вертикальной осью лежат выше. Тогда задача максимизации прибыли сводится к нахождению точки кривой производственной функции, связываемой с самой высокой изопрофитной линией. Такая точка показана на рис.18.1. Как обычно, она характеризуется условием касания: наклон кривой производственной функции должен равняться наклону изопрофитной линии. Поскольку наклон производственной функции есть предельный продукт, а наклон изопрофитной линии есть w1/p, это условие может быть записано также в виде
MP1 =,
что эквивалентно условию, выведенному нами выше. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |