v2
Книги, главы из книг для написания диплома, курсовой работы, реферата по предмету Экономика: Микроэкономика. Промежуточный уровень: Учебник. Хэл Р. Вэриан - 19.1. Минимизация издержек -"Электив"

Книги, главы из книг

Экономика

Микроэкономика. Промежуточный уровень: Учебник. Хэл Р. Вэриан

В данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники.

Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ .

Также бесплатно вы можете подобрать литературу по данному предмету.

Списки литературы

Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.

 

Rambler's Top100
 
   
   
   
   
   
   
   
   
   

19.1. Минимизация издержек

Предположим, что у нас имеется два фактора производства с ценами w1 и w2 и мы хотим найти самый дешевый способ производства заданного объема выпуска y. Если обозначить используемые количества каждого из двух факторов через x1 и x2, а производственную функцию для фирмы — через f(x1, x2), то эту задачу можно записать в виде

min w1x1 + w2x2

x1, x2

при f(x1, x2) = y.

При проведении подобного рода анализа следует сделать те же предупреждения, что и в предыдущей главе: убедитесь, что вы включили в подсчет издержек все издержки производства и что все измерения производятся в совместимом временном масштабе.

Решение этой задачи минимизации издержек — величина минимальных издержек, необходимых для достижения определенного объема выпуска, — будет зависеть от w1, w2 и y, поэтому мы запишем это решение как c(w1, w2, y). Эта функция известна как функция издержек, и она будет представлять для нас значительный интерес. Функция издержек c(w1, w2, y) показывает минимальные издержки производства y единиц выпуска при ценах факторов, равных (w1, w2).

Чтобы понять решение этой задачи, изобразим функцию издержек и технологические ограничения для фирмы на одном графике. Изокванты дают нам технологические ограничения — все комбинации x1 и x2, с помощью которых можно произвести y.

Предположим, что мы хотим нанести на график все комбинации факторов, дающие один и тот же уровень издержек C. Мы можем записать это в виде выражения

w1x1 + w2x2 = C,

которое может быть преобразовано в

x2 = —x1.

Легко увидеть, что это уравнение прямой, имеющей наклон —w1/w2 и точку пересечения с вертикальной осью C/w2. Изменяя число C, мы получаем целое семейство изокост. Каждая точка изокосты выражает одни и те же издержки C, и более высокие изокосты связаны с большими издержками.

Таким образом, наша задача минимизации издержек может быть перефразирована следующим образом: найти на изокванте точку, с которой связана самая низкая изокоста. Такая точка показана на рис.19.1.

Обратите внимание на то, что если оптимальное решение предполагает использование некоторого количества каждого из факторов и если изокванта представляет собой гладкую кривую, то точка минимизации издержек будет характеризоваться условием касания: наклон изокванты должен быть равен наклону изокосты. Или, пользуясь терминологией гл.17, технологическая норма замещения должна равняться отношению цен факторов:

—= TRS(, ) = —. (19.1)

(В случае краевого решения, когда один из двух факторов не используется, условие касания удовлетворяться не должно. Аналогичным образом, если производственная функция имеет "изломы", условие касания теряет смысл. Эти исключения подобны исключениям в ситуации с потребителем, поэтому в настоящей главе мы не будем акцентировать внимание на указанных случаях.)



Рис.

19.1

Минимизация издержек. Выбор количеств факторов, минимизирующих издержки производства, может определяться нахождением на изокванте точки, связываемой с самой низкой изокостой.

Алгебра, скрывающаяся за уравнением (19.1), трудностей не представляет. Рассмотрим любое изменение структуры производства (Dx1, Dx2), при котором выпуск остается постоянным. Такое изменение должно удовлетворять уравнению:

MP1(, )Dx1 + MP2(, )Dx2 = 0. (19.2)

Обратите внимание на то, что Dx1 и Dx2 должны иметь противоположные знаки; если вы увеличиваете используемое количество фактора 1, то для сохранения выпуска неизменным вам придется уменьшить используемое количество фактора 2.

Если мы находимся в точке минимума издержек, то данное изменение не может привести к снижению издержек, поэтому должно соблюдаться условие:

w1Dx1 + w2Dx2 ( 0. (19.3)

Теперь рассмотрим изменение (—Dx1, —Dx2), при котором также производится постоянный объем выпуска и издержки также не могут снижаться. Это подразумевает, что

—w1Dx1 — w2Dx2 ( 0. (19.4)

Сложив выражения (19.3) и (19.4), получим

w1Dx1 + w2Dx2 = 0. (19.5)

Решение уравнений (19.2) и (19.5) для Dx2/Dx1 дает нам

= —= —,

а это не что иное, как условие минимизации издержек, выведенное выше путем геометрических рассуждений.

Обратите внимание на некоторое сходство рис. 19.1 с решением задачи потребительского выбора, графически изображенным ранее. Хотя эти решения и выглядят одинаково, на самом деле они относятся к разным задачам. В задаче потребительского выбора прямая являлась бюджетным ограничением, и потребитель в поисках наиболее предпочитаемого положения двигался вдоль бюджетного ограничения. В задаче с производителем изокванта представляет собой технологическое ограничение, и производитель в поисках оптимального положения перемещается вдоль изокванты.

Выбор количеств факторов, минимизирующих издержки фирмы, вообще говоря, зависит от цен факторов и от того объема выпуска, который фирма хочет производить, поэтому мы записываем эти выбранные количества факторов в виде x1(w1, w2, y) и x2(w1, w2, y). Это так называемые функции условного спроса на факторы, или функции производного спроса на факторы. Они показывают взаимосвязь между ценами и выпуском и оптимальный выбор фирмой количества факторов при условии производства фирмой заданного объема выпуска y.

Обратите особое внимание на различие между функциями условного спроса на факторы и функциями спроса на факторы, максимизирующего прибыль, которые были рассмотрены в предыдущей главе. Функции условного спроса на факторы показывают выбор, минимизирующий издержки при заданном объеме выпуска; функции же спроса на факторы, максимизирующего прибыль, показывают выбор, максимизирующий прибыль при заданной цене фактора.

Функции условного спроса на факторы, как правило, не являются непосредственно наблюдаемыми: они представляют собой гипотетическое построение и отвечают на вопрос, сколько каждого фактора использовала бы фирма, если бы хотела произвести заданный объем выпуска самым дешевым способом. Однако функции условного спроса на факторы полезны в качестве способа отделения задачи определения оптимального объема выпуска от задачи определения метода производства, минимизирующего издержки.

ПРИМЕР: Минимизация издержек для случаев конкретных технологий

Предположим, что мы рассматриваем технологию, при которой факторы производства являются совершенными комплементами, так что f(x1, x2) = = min {x1, x2}.Тогда, если мы хотим произвести y единиц выпуска, нам явно потребуется y единиц x1 и y единиц x2. Следовательно, минимальные издержки производства будут равны

c(w1, w2, y) = w1y + w2y = (w1 + w2)y.

Что можно сказать о случае технологии с использованием совершенных субститутов f(x1, x2) = x1 + x2? Поскольку товары 1 и 2 выступают в производстве совершенными субститутами, ясно, что фирма будет использовать тот из них, который дешевле. Поэтому минимальные издержки производства y единиц выпуска составят w1y или w2y в зависимости от того, какая из этих двух величин меньше. Другими словами:

c(w1, w2, y) = min{w1y, w2y} = min{w1, w2}y.

Наконец, рассмотрим технологию Кобба—Дугласа, описываемую формулой f(x1, x2) = . В этом случае мы можем применить технику дифференциального исчисления, чтобы показать, что функция издержек примет вид

c(w1, w2, y) = K,

где K есть константа, зависящая от a и от b. Подробности этого исчисления представлены в приложении.


Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.

Имя
E-mail
Телефон
Город, ВУЗ
Тип работы
Предмет
Тема работы
Объём работы
Сумма, которую Вы готовы заплатить
Максимальный срок выполнения заказа
Особые замечания

 

Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai.

 

  HotLog Rambler's Top100 Рейтинг@Mail.ru      
  Карта раздела тем Ресурсы сети Списки литературы