v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
19.2. Выявленная минимизация издержекПредположение о том, что фирма выбирает факторы таким образом, чтобы минимизировать издержки производства выпуска, имеет последствия, касающиеся изменения наблюдаемого выбора по мере изменений цен факторов. Предположим, что из наблюдений нам известны два набора цен () и () и связанные с ними выбранные фирмой количества факторов () и (). Предположим также, что с помощью каждой из этих выбранных комбинаций факторов производится один и тот же объем выпуска y. Тогда, если каждая выбранная комбинация факторов есть комбинация, минимизирующая издержки при соответствующих ценах, то должно соблюдаться
и
. Если фирма всегда выбирает такой способ производства y единиц выпуска, который минимизирует ее издержки, то комбинации факторов, выбранные фирмой в моменты времени t и s, должны удовлетворять указанным неравенствам. Мы будем называть эти неравенства слабой аксиомой минимизации издержек (Weak Axiom of Cost Minimization WACM). Запишем второе неравенство в виде
—— ( ——
и прибавим его к первому неравенству, получив при этом неравенство
(— ) + (— ) ( (— ) + (— ),
которое может быть преобразовано к виду
(— ) (—) + (— ) (—) ( 0.
Используя для изменения спроса на факторы и цен факторов D, мы получаем
Dw1Dx1 + Dw2Dx2 ( 0.
Это неравенство следует исключительно из предпосылки о поведении, минимизирующем издержки. Оно налагает ограничения на возможные изменения в поведении фирмы при изменении цен факторов и сохранении постоянного объема выпуска. Например, если цена первого фактора возрастает, а цена второго — остается постоянной, то Dw2 = 0, так что неравенство приобретает вид
Dw1Dx1 = 0.
Если цена фактора 1 возрастает, то, как следует из данного неравенства, спрос на фактор 1 должен сокращаться; следовательно, кривая условного спроса на фактор должна иметь отрицательный наклон. Что можно сказать о том, как меняются минимальные издержки при изменении параметров задачи? Нетрудно видеть, что с ростом цены любого из факторов издержки должны увеличиваться: если один из факторов становится дороже, а цена другого остается без изменений, то минимальные издержки не могут снижаться и, вообще говоря, будут расти. Аналогичным образом, если фирма решает производить больше выпуска и цены факторов остаются постоянными, то издержки фирмы должны будут расти. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |