v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
ПРИЛОЖЕНИЕОбратимся к рассмотрению предложенной в тексте задачи минимизации издержек, используя технику оптимизации, с которой вы познакомились в гл. 5. Речь идет о задаче минимизации издержек, имеющей вид:
min w1x1 + w2x2 x1, x2
при f(x1, x2) = y. Вспомним, что для решения такого рода задач мы пользовались несколькими техническими приемами. Одним из них была подстановка ограничения в целевую функцию. Этим методом по-прежнему можно пользоваться, когда мы имеем дело с функцией конкретного вида f(x1, x2), однако, в общем случае он имеет ограниченное применение. Вторым методом был метод множителей Лагранжа, и он прекрасно подходит для решения рассматриваемой задачи. Чтобы применить этот метод, мы строим функцию Лагранжа
L = w1x1 + w2x2 — ((f(x1, x2) — y)
и берем ее производные по x1, x2 и (. Это дает нам условия первого порядка:
w1 — (= 0,
w2 — (= 0,
f(x1, x2) — y = 0.
Последнее условие есть не что иное, как ограничение. Мы можем преобразовать первые два уравнения и поделить первое уравнение на второе, получив при этом
.
Обратите внимание на то, что это то же самое условие первого порядка, которое мы вывели в тексте: технологическая норма замещения должна равняться отношению цен факторов. Применим этот метод к производственной функции Кобба—Дугласа:
f(x1, x2) = .
Тогда задача минимизации издержек принимает вид
min w1x1 + w2x2 x1, x2
при = y.
Перед нами конкретный вид задачи для функции особого вида, и мы можем решить эту задачу, используя либо метод подстановки, либо метод Лагранжа. При методе подстановки следует вначале выразить из ограничения x2 как функцию x1:
x2 = ,
а затем подставить полученное выражение в целевую функцию, чтобы перейти тем самым к задаче минимизации без ограничений
min w1x1 + w2. x1 Мы могли бы, как обычно, взять производную этого выражения по x1 и приравнять ее к нулю. Можно решить полученное в результате этого уравнение, получив x1 как функцию w1, w2 и y, чтобы получить функцию условного спроса на x1. Сделать это нетрудно, но алгебра здесь довольно запутанная, и мы не будем выписывать все детали решения задачи указанным методом. Мы, однако, решим данную задачу методом Лагранжа. Три условия первого порядка представляют собой
w1 = (
w2 = (
y =.
Умножим первое уравнение на x1 и второе уравнение на x2, получив при этом
w1x1 = ( = (ay
w2x2 = (= (by,
так что
x1 = ( (19.6)
x2 = (. (19.7)
Теперь мы воспользуемся третьим уравнением, чтобы получить выражение для (. Подставляя в условие третьего порядка решения для x1 и x2, получаем
= y.
Мы можем найти из этого уравнения (, получив довольно внушительное выражение
( = ,
которое наряду с уравнениями (19.6) и (19.7) дает нам окончательные решения для x1 и x2. Эти функции спроса на факторы будут иметь вид:
x1(w1, w2, y) =
x2(w1, w2, y) = . Функцию издержек можно найти, записав выражения для издержек при выборе фирмой комбинаций факторов, минимизирующих издержки. Иными словами,
c(w1, w2, y) = w1x1(w1, w2, y) + w2x2(w1, w2, y).
В результате ряда утомительных алгебраических преобразований мы получаем
c(w1, w2, y) = .
(Не беспокойтесь, этой формулы на итоговом экзамене не будет. Она приведена только для того, чтобы продемонстрировать, как мы получаем точное решение задачи минимизации издержек, применяя метод множителей Лагранжа.) Обратите внимание на то что с ростом выпуска, издержки будут расти быстрее, чем при линейной зависимости, с той же скоростью, или медленнее, в зависимости от того, является ли a + b величиной меньшей, равной или большей 1. Это имеет смысл, поскольку в зависимости от величины a + b технология Кобба—Дугласа характеризуется убывающей, постоянной или возрастающей отдачей от масштаба. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |