v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
27.5. Повторяющиеся игрыВ предыдущем параграфе игроки встречались только один раз и разыгрывали игру "дилемма заключенного" лишь единожды. Дело, однако, обстоит по-иному, если игра разыгрывается одними и теми же игроками повторно. В этом случае перед каждым из игроков открываются новые стратегические возможности. Если другой игрок в одном из раундов решит нарушить соглашение, то вы можете нарушить его в следующем раунде. Таким образом, ваш противник может быть "наказан" за "плохое" поведение. При повторяющейся игре у каждого игрока имеется возможность упрочить свою репутацию в качестве партнера для сотрудничества и тем самым поощрить другого к тому же. Окажется ли такого рода стратегия жизнеспособной, будет зависеть от того, разыгрывается ли эта игра конечное или бесконечное число раз. Рассмотрим первый случай, когда обоим игрокам известно, что игра разыгрывается, скажем, 10 раз. Каков будет исход такой игры? Предположим, что мы рассматриваем раунд 10. Согласно принятой предпосылке, это последний раунд игры. Представляется вероятным, что в этом случае каждый из игроков выберет равновесие с доминирующими стратегиями и нарушит соглашение. В конце концов, сыграть в игру в последний раз — все равно, что сыграть в нее всего один раз, поэтому следует ожидать такого же исхода. Посмотрим теперь, что произойдет в раунде 9. Только что мы пришли к выводу, что в раунде 10 каждый игрок нарушит соглашение. Зачем же тогда сотрудничать в раунде 9? Если вы поддерживаете соглашение, то другой игрок вполне может нарушить его и сейчас, воспользовавшись вашей порядочностью. Подобным образом может рассуждать каждый из игроков и, следовательно, каждый нарушит соглашение. Теперь рассмотрим раунд 8. Если другой игрок намеревается нарушить соглашение в раунде 9... и далее проводятся те же рассуждения. При игре, имеющей заранее известное неизменное число раундов, каждый игрок будет нарушать соглашение в каждом из раундов. Если не существует способа добиться сотрудничества в последнем раунде, то не будет существовать и способа добиться сотрудничества в предпоследнем раунде и т.д. Игроки сотрудничают друг с другом в надежде на то, что это послужит стимулом для сотрудничества в будущем. Но для этого необходимо, чтобы возможность игры в будущем существовала всегда. Поскольку в последнем раунде возможность игры в будущем отсутствует, на сотрудничество никто не пойдет. Но тогда почему кто-то должен пойти на сотрудничество в предпоследнем раунде? Или в раунде, ему предшествующем? И т.д., в том же духе — чтобы понять, возможно ли кооперативное решение в дилемме заключенного с известным и неизменным числом раундов, рассуждения надо проводить начиная с конца. Если, однако, игра будет повторяться неограниченное число раз, у вас есть способ повлиять на поведение вашего противника: в случае его отказа сотрудничать в этот раз вы можете отказаться сотрудничать в следующий раз. До тех пор, пока будущий выигрыш обе стороны интересует, угрозы отказа от сотрудничества в будущем может оказаться достаточно, чтобы убедить людей следовать стратегии, эффективной по Парето. Убедительно продемонстрировал это эксперимент, недавно проведенный Робертом Аксельродом1. Он попросил десятки экспертов по теории игр представить на рассмотрение свои любимые стратегии для дилеммы заключенного, а затем провел компьютерный "турнир", в котором эти стратегии были выставлены друг против друга. На компьютере каждая из предложенных стратегий проигрывалась против каждой другой, а компьютер отслеживал общий выигрыш. Стратегией-победителем — той, которая дала наибольший совокупный выигрыш, — оказалась самая простая из стратегий. Она называется "зуб за зуб" и состоит в следующем. В первом раунде вы вступаете в сотрудничество — следуете стратегии "отрицать". В каждом последующем раунде вы продолжаете сотрудничество, если ваш противник шел на сотрудничество в предыдущем раунде, и нарушаете соглашение, если он нарушил его в предыдущем раунде. Другими словами, что бы ни сделал ваш противник в предыдущем раунде, вы это воспроизводите в настоящем раунде. Вот и все, что требуется делать. Стратегия "зуб за зуб" срабатывает очень хорошо, потому что предлагает немедленное наказание за нарушение соглашения. Это также и стратегия прощения: другой игрок наказывается за каждое нарушение соглашения только один раз. Если он исправляется и начинает сотрудничать, то стратегия "зуб за зуб" вознаграждает его сотрудничеством. Данная стратегия представляется на удивление удачным механизмом получения эффективного исхода в игре "дилемма заключенного", проигрываемой неопределенное число раз. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |