v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
ПРИЛОЖЕНИЕВ данном приложении мы рассмотрим задачу максимизации благосостояния, в которой используется индивидуалистическая функция благосостояния. Воспользовавшись для описания границы производственных возможностей функцией трансформации, описанной в гл.29, мы записываем задачу максимизации благосостояния в виде
max W(uA(,), uB(,))
при T(X1, X2) = 0,
где X1 и X2 обозначают общие произведенные и потребленные количества товаров 1 и 2. Функция Лагранжа для этой задачи есть
L = W(uA(,), uB(,)) — (T(X1, X2) — 0).
Взяв производную данной функции по каждой из выбираемых переменных, мы получаем следующие условия первого порядка:
—
—
—
—.
Произведя преобразования и поделив первое уравнение на второе и третье — на четвертое, мы получаем
.
Обратите внимание на то, что это те самые уравнения, которые мы видели в приложении к гл.29. Таким образом, задача максимизации благосостояния дает нам те же условия первого порядка, что и задача эффективности по Парето. Очевидно, это не случайно. Согласно проведенным в тексте рассуждениям, распределение, являющееся результатом максимизации функции благосостояния Бергсона—Самуэльсона, эффективно по Парето, и каждое распределение, эффективное по Парето, максимизирует некоторую функцию полезности. Поэтому точки максимума благосостояния и распределения, эффективные по Парето, должны удовлетворять одинаковым условиям первого порядка. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |