v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
ГЛАВА 4. ПОЛЕЗНОСТЬВ Викторианскую эпоху философы и экономисты беспечно говорили о "полезности" как о показателе общего благосостояния человека. Полезность представлялась им численной мерой благоденствия индивида. Исходя из этой идеи естественным было полагать, что потребители осуществляют выбор таким образом, чтобы максимизировать свою полезность, т.е. достичь как можно большего удовлетворения. Беда в том, что эти экономисты классического толка в действительности никогда не приводили описания способа измерения полезности. Как мы должны определять "количество" полезности, связываемое с различными вариантами выбора? Можно ли утверждать, что полезность для одного человека — та же, что и для другого? Что может означать утверждение:" Еще одна плитка шоколада принесет мне вдвое большую полезность, чем еще одна морковь?" Имеет ли понятие "полезность" какое-либо самостоятельное значение, отличное от "того, что люди максимизируют"? Из-за этих проблем с толкованием понятий экономисты отказались от устаревшей точки зрения на полезность как на меру благоденствия. Вместо этого теория поведения потребителей была полностью переформулирована с позиций потребительских предпочтений, и теперь полезность рассматривают лишь как способ описания предпочтений. Постепенно экономисты пришли к признанию того, что применительно к потребительскому выбору полезность важна только в том смысле, обладает ли один набор благ более высокой полезностью, чем другой, а насколько более высокой — значения на самом деле не имеет. Первоначально предпочтения определялись в терминах полезности: утверждение, что набор (x1, x2) предпочитается набору (y1, y2) означало, что набор x обладает большей полезностью, чем набор y. Теперь же мы склонны рассуждать наоборот. Описание предпочтений потребителя существенно полезно для анализа потребительского выбора, полезность же — это просто способ описания предпочтений. Функция полезности — это такой способ приписывания каждому возможному потребительскому набору некоего численного значения, при котором более предпочитаемым наборам приписываются б(льшие численные значения, чем менее предпочитаемым. Иными словами, набор (x1, x2) предпочитается набору (y1, y2) в том и только в том случае, если полезность набора (x1, x2) больше полезности набора (y1, y2): на языке условных обозначений (x1, x2) ( (y1, y2) , если и только если, u(x1, x2) > u(y1, y2). Единственный смысл приписывания полезности состоит в том, что с его помощью ранжируются товарные наборы. Значение, принимаемое функцией полезности, важно только с точки зрения ранжирования различных потребительских наборов; величина разности полезности двух любых потребительских наборов не существенна. Вследствие указанного акцентирования расположения товарных наборов в определенном порядке полезность этого рода именуется порядковой полезностью. Рассмотрим, например, табл. 4.1, в которой показано несколько разных способов приписывания полезностей трем товарным наборам, одинаково ранжирующих эти наборы. В данном примере потребитель предпочитает набор A набору B, а набор B — набору С. Все указанные способы приписывания полезностей представляют собой функции полезности, годные для описания одних и тех же предпочтений, потому что все эти функции обладают тем свойством, что набору A поставлено в соответствие б(льшее число, чем набору B, которому в свою очередь поставлено в соответствие б(льшее число, чем набору C.
Табл. 4.1 Разные способы приписывания полезностей
Набор U1 U2 U3
A 3 17 –1
D 2 10 –2
C 1 0,002 –3
Поскольку важен лишь порядок расположения наборов, не может существовать единственного способа приписывания полезностей товарным наборам. Если может быть найден один способ приписывания товарным наборам значений полезности, то можно найти и бесчисленное множество способов сделать это. Если u (x1, x2) — один из способов приписывания значений полезности наборам (x1, x2), то умножение u (x1, x2) на 2 (или на любое другое положительное число) — в свою очередь столь же подходящий способ приписывания им полезностей. Умножение на 2 — это пример монотонного преобразования. Это такой способ превращения одного множества чисел в другое, при котором порядок чисел сохраняется. Обычно мы представляем монотонное преобразование функцией f (u), превращающей каждое число u в некоторое другое число f (u) таким способом, при котором порядок чисел сохраняется в том смысле, что u1 ( u2 подразумевает f (u1) ( f (u2). Монотонное преобразование и монотонная функция по существу одно и то же. Примерами монотонных преобразований являются умножение на положительное число (например, f (u) = 3u), прибавление любого числа (напри-мер, f (u) = u + 17), возведение u в нечетную степень (например, f (u) = u3) и т.д. Скорость изменения f (u) по мере изменения u может быть измерена изменением f при переходе от одного значения u к другому, отнесенным к изменению u:
При монотонном преобразовании у f (u2) – f (u1) всегда тот же знак, что и u2 – u1. Следовательно, скорость изменения монотонной функции всегда положительна. Это означает, что график монотонной функции, как показано на рис.4.1A, всегда имеет положительный наклон.
A B
Положительное монотонное преобразование. На рис.A показана монотонная функция — функция, которая все время возрастает. На рис.В показана функция, не являющаяся монотонной, поскольку она то возрастает, то убывает. Рис. 4.1
Если f (u) есть любое монотонное преобразование функции полезности, представляющее какие-либо конкретные предпочтения, то f (u(x1, x2)) — это тоже функция полезности, представляющая те же самые предпочтения. Почему? Доводы в пользу этого даны следующими тремя утверждениями:
Сказать, что u(x1, x2) представляет некие конкретные предпочтения, означает, что u(x1, x2) ( u(y1, y2), если и только если (x1, x2) ( (y1, y2). Но если f(u) есть монотонное преобразование, то u(x1, x2) ( u(y1, y2), если и только если f(u(x1, x2)) ( f(u(y1, y2)). Следовательно, f(u(x1, x2)) ( f(u(y1, y2)), если и только если (x1, x2) ( (y1, y2), так что функция f(u) представляет предпочтения совершенно таким же образом, как и исходная функция полезности u(x1, x2).
Подытожим эти рассуждения, сформулировав следующий принцип: монотонное преобразование функции полезности есть функция полезности, представляющая те же самые предпочтения, что и исходная функция полезности. Геометрически функция полезности представляет собой способ обозначения кривых безразличия. Поскольку каждый набор, находящийся на какой-либо кривой безразличия, должен иметь одинаковую полезность, функция полезности есть такой способ приписывания различным кривым безразличия неких численных значений, при котором более высоким кривым безразличия приписываются б(льшие численные значения. С этой точки зрения, монотонное преобразование — всего лишь переименовывание кривых безразличия. До тех пор, пока кривые безразличия, на которых находятся более предпочитаемые наборы, обозначаются б(льшими числами, чем кривые безразличия, на которых находятся менее предпочитаемые наборы, подобное переименовывание будет представлять те же самые предпочтения. Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |