v2
![]() |
![]() |
![]() |
||
|
||||
|
||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
Книги, главы из книгЭкономикаМикроэкономика. Промежуточный уровень: Учебник. Хэл Р. ВэрианВ данном разделе мы вам предлагаем бесплатные материалы, по которым возможно выполнение дипломов, курсовых, рефератов и контрольных работ по данному предмету самостоятельно, а также на заказ, в частности словари и справочники. Кроме словарей и справочников билетов и вопросов Вы можете найти на сайте «Электив»: билеты и вопросы, методички, шпаргалки, книги, статьи, аннотации на книги, рецензии, словари, планы работ . Также бесплатно вы можете подобрать литературу по данному предмету. Список тем работ, которые Вы можете у нас заказать в максимально короткие сроки.
|
![]() |
|
![]() |
ПРИЛОЖЕНИЕЕсли предпочтения имеют особый вид, это означает, что и функции спроса, возникающие на основе этих предпочтений, также принимают особый вид. В гл. 4 описаны квазилинейные предпочтения. Эти предпочтения предполагают существование кривых безразличия, параллельных между собой, и могут быть представлены функцией полезности вида
u(x1, x2) = v(x1) + x2.
Задача на нахождение максимума подобной функции полезности принимает вид
max v(x1) + x2 x1, x2
при p1x1 + p2x2 = m.
Выразив из бюджетного ограничения х2 как функцию от х1 и подставив результат в целевую функцию, получаем
max v(x1) + m/p2 — p1x1/p2. x1
Взяв производную данного выражения, получаем условие первого порядка
.
Эта функция спроса обладает интересным свойством — спрос на товар 1 должен быть независим от дохода, что мы уже видели при использовании кривых безразличия. Обратная кривая спроса дана уравнением
p1(x1) = v’(x1)p2.
Иными словами, обратная кривая спроса на товар 1 есть производная функции полезности, умноженная на p2. Стоит нам узнать функцию спроса на товар 1, и функция спроса на товар 2 может быть найдена из бюджетного ограничения. Например, рассчитаем функции спроса для функции полезности вида
u(x1, x2) = ln x1 + x2.
Применение условия первого порядка дает
,
так что прямая функция спроса на товар 1 есть ,
а обратная функция спроса есть
.
Прямую функцию спроса на товар 2 находим подстановкой в бюджетное ограничение:
— 1.
Необходимо сделать одно предостережение в отношении указанных функций спроса. Обратите внимание на то, что в рассматриваемом примере спрос на товар 1 независим от дохода. Это общее свойство, присущее квазилинейным функциям полезности: при изменении дохода спрос на товар 1 остается постоянным. Однако данное утверждение верно лишь для некоторых значений дохода. Функция спроса не может быть в буквальном смысле независимой от дохода для всех его значений; скажем, когда доход равен нулю, спрос тоже равен нулю. Выведенная выше квазилинейная функция спроса имеет смысл только при потреблении положительных количеств каждого товара. При низких уровнях дохода функция спроса принимает несколько иной вид. См. рассуждения по поводу квазилинейных функций спроса в кн. Hal R.Varian, Microeconomic Analysis, 3rd ed. (New York: Norton, 1992). Если же вы решите заказать у нас диплом, реферат, курсовую, а также любую другую работу или услугу, перечисленную в разделе "Услуги и цены". Для получения более детальной информации ознакомьтесь с вопросами оплаты и доставки, ответами на наиболее частые вопросы, статьями наших авторов.
Заказ курсовой, заказ реферата, заказ диплома Вы можете сделать, заполнив форму заказа, позвонив по телефону горячей линии 8(926)2300747, или переслав сообщение по адресу zakaz@xn--b1afjhd8b5d.xn--p1ai. |
![]() |
![]() |
![]() |
![]() |
||||||||||||||
![]() |
![]() |
![]() |
![]() |
||||||||||||||
|
![]() |
||||||||||||||||
![]() |
![]() |